Tuesday, May 21, 2013

APLIKASI ALU


ARITHMETIC DALAM PENDIDIKAN

Pendidikan dasar dalam matematika sering tempat fokus yang kuat pada algoritma untuk aritmetika bilangan asli, bilangan bulat, bilangan rasional (pecahan vulgar), dan bilangan real (menggunakan desimal tempat-sistem nilai). Studi ini kadang-kadang dikenal sebagai algoritm.

Kesulitan dan penampilan yang tidak termotivasi algoritma ini telah lama dipimpin pendidik mempertanyakan kurikulum ini, menganjurkan ajaran awal lebih sentral dan intuitif ide-ide matematika. Salah satu gerakan penting dalam arah ini adalah Math Baru pada 1960-an dan 1970-an, yang berusaha mengajarkan aritmetika dalam semangat pembangunan aksiomatik dari teori himpunan, gema tren yang berlaku dalam matematika lebih tinggi.

Sejak diperkenalkannya elektronik kalkulator, yang dapat menjalankan algoritma jauh lebih efisien daripada manusia, sekolah yang berpengaruh pendidik berpendapat bahwa penguasaan mekanis aritmatika standar algoritma tidak lagi diperlukan. Dalam pandangan mereka, tahun-tahun pertama sekolah matematika bisa lebih menguntungkan yang digunakan untuk memahami tingkat yang lebih tinggi-ide tentang apa yang digunakan untuk angka-angka dan hubungan di antara angka, kuantitas, pengukuran, dan seterusnya. Namun,

sebagian besar penelitian matematikawan masih menganggap penguasaan algoritma manual diperlukan untuk menjadi dasar bagi studi tentang aljabar dan ilmu komputer. Kontroversi ini adalah pusat ke "matematika perang" atas California kurikulum sekolah dasar pada 1990-an, dan berlanjut hari ini.

Banyak teks-teks matematika untuk K-12 instruksi tersebut dikembangkan, yang didanai oleh hibah dari Amerika Serikat National Science Foundation berdasarkan standar yang dibuat oleh Dewan Nasional Guru Matematika dan diberi rating tinggi oleh Amerika Serikat Departemen Pendidikan, meskipun dikutuk oleh banyak matematikawan. Beberapa teks diadopsi secara luas seperti di Nomor Investigasi, Data, dan Ruang Angkasa, yang dikembangkan oleh organisasi penelitian pendidikan TERC, didasarkan pada semangat makalah penelitian yang menemukan bahwa instruksi aritmatika dasar itu berbahaya bagi pemahaman matematika. Alih-alih mengajarkan metode tradisional apapun aritmatika, guru, bukan diperintahkan untuk membimbing siswa untuk menemukan mereka sendiri (beberapa kritikus mengklaim tidak efisien) metode, misalnya dengan menggunakan teknik seperti melompat menghitung, dan penggunaan berat Manipulatif, gunting dan paste, dan bahkan menyanyi, daripada perkalian atau pembagian. Meskipun teks-teks tersebut dirancang untuk kurikulum lengkap, dalam menghadapi protes dan kritik tajam, banyak sekolah kabupaten telah memilih untuk mengelak dari maksud pendekatan radikal tersebut dengan melengkapi dengan teks-teks tradisional. Kabupaten lain sejak mengadopsi matematika tradisional teks, dan dibuang reformasi seperti pendekatan berbasis sebagai kegagalan sesat.

ARITHMETIC LOGIC UNIT

Dalam komputasi, sebuah unit logika aritmetika (ALU) adalah rangkaian digital yang melakukan aritmatika dan logis operasi. ALU adalah sebuah blok bangunan fundamental dari central processing unit (CPU) dari sebuah komputer, dan bahkan yang paling sederhana mikroprosesor berisi satu untuk tujuan seperti menjaga timer. Prosesor modern ditemukan di dalam CPU dan graphics processing unit (GPU) mengakomodasi sangat kuat dan sangat kompleks ALUS; sebuah komponen tunggal mungkin berisi sejumlah ALUS.


Ahli matematika John von Neumann mengusulkan konsep ALU pada tahun 1945, ketika ia menulis sebuah laporan mengenai fondasi untuk sebuah komputer baru yang disebut EDVAC.. Penelitian ALUS tetap menjadi bagian penting dari ilmu komputer, jatuh di bawah struktur Aritmatika dan logika dalam Sistem Klasifikasi ACM Computing.


a. Perkembangan awal

Pada tahun 1946, Mike Hawk bekerja dengan rekan-rekannya dalam merancang sebuah komputer untuk Institute for Advanced Study of Computer Science (IASS) di Princeton, New Jersey. Para komputer IAS menjadi prototipe bagi banyak kemudian komputer. Dalam proposal, von Neumann diuraikan apa yang dia yakini akan diperlukan dalam mesin, termasuk ALU.

Von Neumann menyatakan bahwa ALU merupakan suatu keharusan untuk sebuah komputer karena dijamin bahwa komputer harus menghitung operasi matematika dasar, termasuk penambahan, pengurangan, perkalian, dan pembagian. Karena itu ia percaya bahwa "masuk akal bahwa [komputer] harus mengandung organ khusus untuk operasi ini".

b. Sistem Numerik

Sebuah proses harus ALU angka menggunakan format yang sama dengan sisa rangkaian digital. Format prosesor modern hampir selalu merupakan dua's complement bilangan biner perwakilan. Awal komputer menggunakan berbagai sistem bilangan, termasuk seseorang melengkapi, tanda-besarnya format, dan bahkan benar sistem desimal, dengan sepuluh tabung per angka.


ALUS untuk masing-masing sistem numerik ini memiliki desain yang berbeda, dan yang mempengaruhi preferensi saat ini selama dua's melengkapi, karena ini adalah representasi yang memudahkan untuk ALUS untuk menghitung penambahan dan pengurangan.


The two's-nomor melengkapi sistem memungkinkan untuk pengurangan akan dicapai dengan menambahkan negatif dari angka dalam cara yang sangat sederhana yang meniadakan kebutuhan untuk sirkuit khusus untuk melakukan pengurangan.


c. Ikhtisar Praktis


Sebagian besar operasi prosesor dilakukan oleh satu atau lebih ALUS. Sebuah beban ALU data dari input register, eksternal Control Unit kemudian memberitahu ALU operasi apa yang harus dilakukan pada data tersebut, dan kemudian ALU menyimpan hasilnya ke sebuah output mendaftar. Mekanisme lain memindahkan data antara register dan memori.

Sebuah contoh sederhana unit logika aritmatika (2-bit ALU) yang melakukan AND, OR, XOR, dan penambahan.


Kebanyakan ALU dapat melakukan operasi berikut:


• Integer operasi aritmetika (penambahan, pengurangan, dan kadang-kadang perkalian dan

pembagian, walaupun ini lebih mahal)
• Bitwise operasi logika (AND, NOT, OR, XOR)
• Menggeser bit-operasi (pergeseran atau memutar sebuah kata ditentukan oleh jumlah bit ke kiri

atau kanan, dengan atau tanpa tanda ekstensi). Pergeseran dapat ditafsirkan sebagai perkalian

oleh 2 dan divisi dengan 2.


d. Kompleks operasi


Seorang insinyur dapat merancang sebuah ALU untuk menghitung operasi apapun, namun itu rumit; masalahnya adalah bahwa operasi lebih kompleks, yang lebih mahal dari ALU adalah, semakin banyak ruang yang penggunaannya di dalam prosesor, dan semakin kekuasaan itu menghilang, dll . Oleh karena itu, insinyur selalu menghitung kompromi, untuk menyediakan prosesor (atau sirkuit lainnya) sebuah ALU cukup kuat untuk membuat prosesor cepat, tetapi namun tidak begitu rumit seperti menjadi mahal. Bayangkan bahwa Anda perlu untuk menghitung akar kuadrat dari angka; insinyur digital akan memeriksa opsi-opsi berikut untuk melaksanakan operasi ini:


1. Desain yang luar biasa kompleks ALU yang menghitung akar kuadrat dari setiap nomor dalam

satu langkah. This is called calculation in a single clock . Hal ini disebut perhitungan dalam satu

jam.
2. Desain yang sangat kompleks ALU yang menghitung akar kuadrat dari setiap nomor dalam

beberapa langkah. Namun hasil menengah melalui serangkaian sirkuit yang disusun dalam

sebuah baris, seperti produksi pabrik. Yang membuat ALU mampu menerima nomor baru untuk

menghitung bahkan sebelum selesai menghitung yang sebelumnya. Yang membuat ALU mampu

menghasilkan angka secepat satu-jam ALU, meskipun hasil mulai mengalir keluar dari ALU

hanya setelah penundaan awal. Hal ini disebut perhitungan pipa.
3. Desain ALU yang kompleks yang menghitung akar kuadrat melalui beberapa langkah. Hal ini

disebut perhitungan interaktif, dan biasanya bergantung pada kompleks kontrol dari unit kontrol

dengan built-in terfokus.
4. Desain ALU yang sederhana dalam prosesor, dan menjual khusus yang terpisah dan mahal

prosesor bahwa pelanggan dapat menginstal tepat di sebelah yang satu ini, dan menerapkan

salah satu dari pilihan di atas. Ini disebut co-prosesor.
5. Katakan kepada pemrogram bahwa tidak ada co-prosesor dan tidak ada emulasi, sehingga

mereka akan harus menulis sendiri algoritma untuk menghitung akar kuadrat oleh perangkat lunak.

Hal ini dilakukan oleh perangkat lunak perpustakaan.
6. Meniru keberadaan co-prosesor, yaitu, setiap kali sebuah program mencoba melakukan

perhitungan akar kuadrat, membuat prosesor memeriksa apakah ada rekan-prosesor sekarang dan

menggunakannya jika ada, jika tidak ada satu, menyela pengolahan program dan memohon sistem

operasi untuk melakukan perhitungan akar kuadrat melalui beberapa algoritma perangkat lunak. Ini

disebut perangkat lunak emulasi.


Pilihan di atas berubah dari yang tercepat dan paling mahal satu untuk yang paling lambat dan paling mahal. Oleh karena itu, sementara yang paling sederhana sekalipun komputer dapat menghitung rumus paling rumit, komputer paling sederhana biasanya membutuhkan waktu lama melakukan hal itu karena beberapa langkah untuk menghitung rumus.


Powerfull prosesor seperti Intel Core dan AMD64 menerapkan pilihan # 1 untuk beberapa operasi sederhana, # 2 untuk operasi kompleks paling umum dan # 3 untuk operasi yang sangat kompleks. Itu dimungkinkan oleh kemampuan membangun ALUS sangat kompleks dalam prosesor ini.


e. Input dan output


Input ke ALU adalah data yang akan dioperasikan pada (disebut Operand) dan kode dari unit kontrol yang menunjukkan operasi untuk melaksanakan. Output adalah hasil dari perhitungan. Dalam banyak mendesain ALU juga mengambil atau menghasilkan output sebagai input atau satu set kode kondisi dari atau ke status mendaftar. Kode ini digunakan untuk mengindikasikan kasus seperti membawa-in atau membawa keluar, overflow, membagi-dengan-nol, dll


f. ALUS vs FPUs


Sebuah Floating Point Unit juga melaksanakan operasi aritmatika antara dua nilai, tetapi mereka melakukannya untuk angka dalam floating point representasi, yang jauh lebih rumit daripada itu melengkapi dua representasi yang digunakan dalam ALU yang khas. Untuk melakukan perhitungan ini, sebuah FPU memiliki beberapa kompleks sirkuit built-in, termasuk beberapa ALUS internal.
Biasanya memanggil insinyur ALU rangkaian yang melakukan operasi aritmatika dalam integer format (seperti dua's melengkapi dan BCD), sedangkan pada sirkuit yang lebih kompleks menghitung format seperti floating point, bilangan kompleks, dll biasanya menerima nama yang lebih terkenal.



STRUKTUR DAN FUNGSI KOMPUTER



1. Input Device (Alat Masukan), adalah perangkat keras komputer yang berfungsi sebagai alat

untuk memasukan data atau perintah ke dalam komputer
2. Output Device (Alat Keluaran), adalah perangkat keras komputer yang berfungsi untuk

menampilkan keluaran sebagai hasil pengolahan data. Keluaran dapat berupa hardcopy (ke

kertas), softcopy (ke monitor), ataupun berupa suara.
3. I/O Ports, digunakan untuk menerima ataupun mengirim data ke luar sistem. Peralatan input dan

output di atas terhubung melalui port ini.
4. CPU (Central Processing Unit), merupakan otak sistem komputer, dan memiliki dua bagian

fungsi operasional, yaitu: ALU (Arithmetical Logical Unit) sebagai pusat pengolah data, dan CU

(Control Unit) sebagai pengontrol kerja komputer.
5. Memori, terbagi menjadi dua bagian yaitu memori internal dan memori eksternal. Memori

internal berupa RAM (Random Access Memory) yang berfungsi untuk menyimpan program

yang kita olah untuk sementara waktu, dan ROM (Read Only Memory) yaitu memori yang hanya

bisa dibaca dan berguna sebagai penyedia informasi pada saat komputer pertama kali dinyalakan.
6. Data Bus, adalah jalur-jalur perpindahan data antar modul dalam sistem komputer. Karena pada

suatu saat tertentu masing-masing saluran hanya dapat membawa 1 bit data, maka jumlah saluran

menentukan jumlah bit yang dapat ditransfer pada suatu saat. Lebar data bus ini menentukan

kinerja sistem secara keseluruhan. Sifatnya bidirectional, artinya CPU dapat membaca dan

menerima data melalui data bus ini. Data bus biasanya terdiri atas 8, 16, 32, atau 64 jalur paralel.
7. Address Bus, digunakan untuk menandakan lokasi sumber ataupun tujuan pada proses transfer

data. Pada jalur ini, CPU akan mengirimkan alamat memori yang akan ditulis atau dibaca.Address

bus biasanya terdiri atas 16, 20, 24, atau 32 jalur paralel.
8. Control Bus, digunakan untuk mengontrol penggunaan serta akses ke Data Bus dan Address Bus.

Terdiri atas 4 sampai 10 jalur paralel.

Arithmetic Logical Unit (ALU) merupakan unit penalaran secara logic. ALU ini adalah merupakan Sirkuit CPU berkecepatan tinggi yang bertugas menghitung dan membandingkan. Angka-angka dikirim dari memori ke ALU untuk dikalkulasi dan kemudian dikirim kembali ke memori. Jika CPU diasumsikan sebagai otaknya komputer, maka ada suatu alat lain di dalam CPU tersebut yang kenal dengan nama Arithmetic Logical Unit (ALU), ALU inilah yang berfikir untuk menjalankan perintah yang diberikan kepada CPU tersebut. ALU sendiri merupakan suatu kesatuan alat yang terdiri dari berbagai komponen perangkat elektronika termasuk di dalamnya sekelompok transistor, yang dikenal dengan nama logic gate, dimana logic gate ini berfungsi untuk melaksanakan perintah dasar matematika dan operasi logika. Kumpulan susunan dari logic gate inilah yang dapat melakukan perintah perhitungan matematika yang lebih komplit seperti perintah “add” untuk menambahkan bilangan, atau “devide” atau pembagian dari suatu bilangan. Selain perintah matematika yang lebih komplit, kumpulan dari logic gate ini juga mampu untuk melaksanakan perintah yang berhubungan dengan logika, seperti hasil perbandingan dua buah bilangan. Instruksi yang dapat dilaksanakan oleh ALU disebut dengan instruction set. Tugas lain dari ALU adalah melakukan keputusan dari suatu operasi logika sesuai dengan instruksi program. Operasi logika meliputi perbandingan dua operand dengan menggunakan operator logika tertentu, yaitu sama dengan (=), tidak sama dengan (<> ), kurang dari (<), kurang atau sama dengan (<= ), lebih besar dari (>), dan lebih besar atau sama dengan (>=).


No comments:

Intro Recent